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Abstract A ne\\ dpproach to analyze mechamcal S\ ,knl' that have an uncertain distribution of
material properties and loadings. for the varidblht) of their dynamic response parameters is
developed. The methodolog) IS del1ltlnstrated through ,ohmg for the probabilistic moments of
eigenvalues of a non-self-adjoint structural system. Matenal properties are modelled using random
fields and uncertain loadings arc modelled using random variables. By treating the random fluc­
tuations of v·ibrator\ response to be the stochastic perturbations to mean response, second order
moments of eigenvalues are obtained. To circumvel1t the practical difficulty of obtaining the exact
correlation models for parameter variability. second order moments of eigenvalues are evaluated in
terms of variance functloll'. Both the sensitl\it) of eigenvalue, to the variability in system
parameters. and the eifel''' on the elgel1value vanabilltv \,f correlation properties of uncertain
parameter, dre demonstrdted

I I'sTRODt CliO"

The vibratory response of mechanical and structural systems is highly sensitive to parameter
fluctuations. The dynamic response becomes a stochastic function when systems have an
uncertain distribution of material properties and loadings. Most real-life loadings are
random. The strength and deterioration characteristics of cost-effective materials such as
composites. microgeometric topography of mechanical components etc.. have an uncertain
distribution due to manufacturing or measuring errors. variations in the sizes of fasteners
and operating environment. In these circumstances. safer and reliable designs can be
achieved only by probabilistic modelling and analysis (Hori. 1973; Ibrahim. 1987; Schueller
and Shinozuka. 1987). Further. a probabilistic analysis is essential for the evaluation of
reliability and service life of. and accumulated damage in a structure (Bogdanoff and Kozin,
1985; Bolotin. 1989).

Stochastic models for material properties. microgeometric topography of machined
surfaces and environmental loadings have recently been developed (Shinozuka and Lenoe,
1976; Vanmarcke. 198); Zhang and Kapoor. 1991). Vibration analysis of mechanical
systems has been performed based on a probabilistic approach (Herrmann, 1971; Soong
and Cozzarelli. 1976; Schueller and Shinozuka. 1987; Bucher and Brenner. 1992; Elishakoff
and Colombi. 199); Ramu and Ganesan. 199)). Eigenvalue problems of structural systems
have been analyzed in the works of Boyce (1968). Shinozuka and Astill (1972). Soong and
Cozzarelli (1976). Vom Scheidt and Purkert (198)). Ibrahim (1987). Benaroya (1991). and
Ramu and Ganesan (199)). However. all thesc works deal only with self-adjoint systems
i.e. structures subjected to conservative loadings.

Many important mechanical Sy stems such as actl\'Cly-controlled systems, rotor systems.
aeroelastic structures and pipes conveying high veloctty fluid flow. are described by non­
self-adjoint ditTerential cquations. Rotor systems and non-conservatively loaded columns
have been analyzed in the works of Ganesan ('I 0/ (199)) and Sankar cl al. (1993). The
uncertain axial loadings have not been considered in these works. Both the uncertain
loadings as well as matcrial properttes ha\e been l'onsidered in the work of Ramu and
Ganesan (199::!). H(l\\ner. (i) rull cmariance structure of the clgensolutions has not been
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obtained. (ii) only distributed axial loadings have been considered, (iii) only one boundary­
condition has been considered, (iv) the expressions derived pose computational difficulties
for certain types of correlation relationships and (v) the closed-form solutions developed
are based on perturbation expansions that lead to less accurate results.

Further. in the above work, the stochastic fields have been characterized through their
full-length correlation functions, which are seldom available in industrial practice. Newer
measures of uncertainty such as scale of fluctuations (Vanmarcke, 1983) can be used to
account for this practical difficulty. The expressions derived in the previous work (Ramu
and Ganesan, 1992) have to be numerically integrated and they involve mixed functions of
correlation functions and higher order derivatives of base solutions. Since the numerical
method that is best suited for a particular correlation function need not be the best-suited
one for the higher order derivatives of the base solutions, the computational accuracy is
largely affected. Also, for certain correlation functions such as the singular functions of
white noise field and the exponential functions of Markov processes and autoregressive
correlation models. the numerical evaluation becomes highly inaccurate. All the above
issues are considered in the present paper and a new approach that employs asymptotic
expansions that are completely different from those employed in the previous works is
developed. More general solutions that yield the complete covariance structure of eigen­
solutions are developed in such a way that they can readily be employed in practical
design and diagnostics problems. Both distributed and end axial loadings as well as different
types of boundary conditions are considered in the present paper.

2, \1ATHEMATICAL FORMULATION

The non-self-adjoint structural system considered here is described by the following
partial differential equation:

:Ell ~a(\)]h\'T'-"- P(l + C)II' +.41[1 +d](L-x)w" +,11[1 +b(x)]~i' = O. (I)

Here 1\ is the characteristic state variable of the elastic system, primes denote partial
differentiation with respect to .Y and overdots denote partial differentiation with respect
to r,

In the above equation, the second and third terms involving the second derivative of
the state variable make the partial differential equation non-self-adjoint. Many important
structural systems can be represented by this partial differential equation. The undamped­
free motions of beam-col umns subJected to axially-distributed as well as end follower forces
and that of cylindrical pipes conveying tluids (the effect of corio lis accelerations is included
separately) arc described by the above equation, Further, the undamped-free motions of
actively-controlled structures such as the antenna arm of a satellite, are described through
the above equation, The first term in eqn (I) represents the effects of flexural rigidity of the
structural system, The second and third terms represent, respectively, the effects of end
thrust (or centrifugal forces in fluid-flowing pipes or control parameter in actively-controlled
structures) and distributed axial loadings (or friction forces). The last term stands for the
elfects of inertial forces (structural. thlldic or coupled structure-tluid forces).

The boundary conditions are provided depending upon the type of the structural
system being considered and further initial conditions about wand (h\j6r at the time origin
are also provided. Even though any set of boundary conditions can be taken into account
by the present method of analysis, following two cases are considered in detail for the
purposes of brevity and clarity:

('ase I:

11'10, f) = 11'(0, f) = 0

11"([' f) = :E[I +a(x)]/x w"}'la'CLIl = 0

(2)

(3)



Case' II:

\\'(0, t) = 11"(0, fI = 0

II(LI) = I\,"(L.I) = O.
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(4)

(5)

It may be noted here that when P = O. eqns (1 J) describe the undamped-free motions
of a rod subjected to distributed non conservative axial loadings, which is known as
"Leipholz column". Similarly, when 9 = 0, eqns (IJ) model the undamped-free motions
of (i) a rod subjected to follower force P at the end, which is known as "Beck's column"
and (ii) an antenna arm of a satellite that is actively controlled using a constant-feedback
control factor P. In the above five equations, functions a(x) and h(x) are independent one­
dimensional univariate homogeneous stochastic fields and further c and d are independent
random variables. These stochastic coefficients are characterized as follows:

a(.v): Zero mean: variance (J,~ , autocorrelation R"" (r) : PSD function S,m (f) ; correlation
function P"" (r); normalized PSD function .I,utl). scale of fluctuation e(/"

h (x) : Zero mean; variance (J~, autocorrelation Rhi (r) : PSD function Shh(f) ; correlation
function Phi, (r) ; normalized PSD function ShiU) : scale of fluctuation e/>.

c. d: Zero means; respective variances (J,c and (J,~.

r. f: The lag vector and the wave frequency.

The solution to eqn ( 1) is sought in the form

1\ (V'. I) = X,,(Y) x !.(fI (6)

where T,,(t) is a time function such that ()' T,,( 1) ()/" = ~Q,; T,,(I) and it is implicit that the
solution has a discrete spectrum. After substituting eqn (6) into eqn (1), one gets

I L':£[l+a(rr)]/X;;(r):"+ I L'[X;;(r),q(l+d)(L-rr)]

+] L' P( I +c)X;;(r) -lfI[1 +h(rL)]Q,~XnCv) = 0 (7)

where the dimensionless parameter T =y r is introduced so that primes now denote differ­
entiation with respect to r. The boundary conditions correspondingly turn into

Case 1:

Case 11 :

X,,(o) = X;.(o) = 0

X;;(I) = :E[I+a(rL)]/xX;;(Tr): '01 =0

X,,(o) = X;;(o) = 0

X( I) = X;;( 1) = O.

(8)

(9)

(10)

(I] )

After multiplying eqn (7) by L", dividing by £I and making the substitutions
G = C EI.I/" = Q,; x fflL.j EI and 91 = .qL, eqn (7) can be written as

; [I +:w(r)]X;;(r):" +91(;( 1- r)( I +d)X;;(r) + P(;( 1+ cLr;;(r) = 1/,,[1 + lih(r)]X,,(r). (12)

In order to characterize the stochastic fields in the asymptotic analysis that follows, two
perturbation parameters 1. and Ii have been introduced into eqn (12) to be associated with
a(x) and hey) respectively. The following asymptotic expansions are now employed so as
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lead to the determination of full CO\ anance st ruct ure of the response variables in an easier
and more straightforward manner.

X,,(T) = XnO(r)+:xX."iT) +fiX"2(r)+dX",('r)+cXn~(r)+.

(13)

(14)

It may be noted that the above asymptotic series expansions are different from that of the
previous work by the present author (Ramu and Ganesan, 1992) in that the stochastic
coefficients of the partial differential equation, c and d (which are the random variables
that correspond to constant end thrust and distributed axial loading respectively) are being
used as the perturbation parameters of the asymptotic series expansions that correspond
to eigensolutions. It is this form of asymptotic expansions that actually leads to the
calculation of the covariance structure of eigenvalues in an easier and more accurate manner
than that of the work by Ram u and Cianesa n ( 1992).

After substituting the above t\\O asymptotic expansions in eqn (\2). one gets

:[1 +::w(r)j[X;;(I(r)+:xX;;dTl+!H;,.(T) dX (:)+cX;;4(r)+ ... J:"

+.(fJi( 1- r)( I + d) r X;:(I(r) + :xX::, (:)+ flX;;. (r) + dX;;, (r) +cX;;~ (r) + ... }

(15)

On expanding eqn (15). collecting terms of like power in 'l., {J, d and c and then setting
'l. = fl = I. a set of ordinary differentIal equations are obtained for X'II(r). i = 0, 1,2, ... :

(16)

.'\'·;;';(r) + ((/1 (J- (/, GT)X;;I (T) +u(cjY:;,( n -+ PGX;: (T) +2(/(r)X;;;;(r) +u"(r)X;;o(r)

= j.1nO XIII (r ) + j.1" I X"o (r) (17)

In the abo\e equations. overhars associated with P have been dropped for convenience.
Corresponding to the above set of ditferential equations and asymptotic expansions given
by eqns ( J 3) and (14). the boundarv conditions are rewritten as follows:

('UIC 1 ("UIC II

,\ (() I =() Xno(O) = 0 (21)

X (() ) =() X;;O(O) = 0 (22)

X;;,,( II = () Xno(l) = 0 (23)

\:;:,( I) = () \;;(I( I) = 0 (24)
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Case I: Xn1 (0) = X,,: (0) = X"' (0) = X,,4 (0) = X;, 1 (0) = X;,: (0) = X~3 (0) = X~4 (0) = 0,

(25)

CaseIl:X"I(O) = X,,:(O) = X"' (0) = Xn4 (0) = X::dO)

= X;:: (0) = X;;3 (0) = X~4 (0) = 0 (26)

Case II: X"I (I) = X,,: (I ) = X"' (I ) = X,,4( 1) = X;:I (1) = X;::(I) = X~3(1) = X~4(1) = 0

(27)

The generating solution P"o and X"o (r) are obtained from eqn (16) corresponding to
boundary conditions given by eqns (2\ )~(24). Using these, other components of the asymp­
totic series are obtained as follows. Considering eqn (18), after multiplying by X"o (r) and
then integrating between 0 and I. II" 1 can be obtained corresponding to any set of sample
realizations of stochastic parameters a (r), b (r), c and d, according to :

P"I

~I "I II
I

a"(r)X;;o (r Lr"o(r) dr + 2 I a'( r)X;;:,(r)X"o(r) dr + a(r)X;;~(r)XnO(r) dr
.. 0 .J () ()

----~~--~~~--

\1 X,;o(r) de
",0

(28)

It may be noted that point fluctuations of the coefficients of the non-self-adjoint system are
considered to constitute the stochastic perturbations in the asymptotic series expansions
for eigensolutions. After integrating by parts and using the boundary conditions for X"O
(r), {t,,] is approximated as,

(29)

In a similar manner other components of the asymptotic expansion for eigenvalues are
obtained and they are given by

(I r ,,] }
11,,4 = PG I. X;:o(r)X"o(r)dr \J X,;o(r)dr .

v [) ( l)

(30)

(31)

(32)

From eqns (13) and (28)(32) it can be shown that the mean value of ftn is equal to PnO

since the stochastic fields a(x) and b(x) are zero-mean fields and further c and dare zero­
mean random variables. The expressions for covariance between any two eigenvalues ft,
and PI' and variance of any eigenvalue ft, are now evaluated.
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-t-(PG)C(J~ r X;;I(T;)X (TIldT I 1'1 X;;)(Tc)Xlo(Tc)dTc+ .... l(.
.., II ~ I) _

(33)

It can be seen from the above two equations that the eigenvalue variability due to the
mass density is often more than that due to the Young's modulus, i.e. the eigenvalues are
more sensitive to variations in mass density than that in Young's modulus. It can also be
observed that for particular values of covariances of random fields a(x) and b(x) and
random variables (' and d, it is the shape of the correlation functions or corresponding
power spectral density functions that determines the values of covariances of eigenvalues.
The correlation function could be an exponential decay function which corresponds to first
order autoregressive model or any other linear. quadratic or sine functions. The evaluation
of a suitable correlation model from among various competing models using the exper­
imental data is a tedious job and in most cases, a satisfactory model would not have been
evaluated at all. An alternative is given here for use in this circumstance that makes use of
the theory of spatial averages. The stochastic coefficients of the differential system are now
characterized through the scale of fluctuations or variance functions which are the more­
recently-developed measures of stochasticity. A detailed theory about the theory of spatial
averages can be seen in Vanmarcke ([983). The spatial averages of stochastic coefficients
are formed over the domain of the differential equation and are obtained as

"I

ill = (1 L) lil(TldT:
..,II

hI = (l;L) [ b(T) dT.
,,0

(35,36)

Probabilistic moments of these spatial averages are given below:

Var (af) = (J,~ L cl
n

CPau(T] -Tc) dT] dT c
"'() .JO

(37)

(38)



Val' (h, ) = IT" (39)

I I' r" (L) and L. (L) (knnte n:spectivel~ the \a riance functions determined from the
respective scales nftluctuations nfthe randnm fields (/IY) and hIY). the above two equations
can be rewritten as.

(40.41 )

:\ow. based nn local a\erages of stochastic cndlicients. second order moments of
eigenvalues are giwn beln\\ ,

\ ' " I \
em (11,.11,) = 'j r:,(Tlllr I, r (r)d" 'IT

I, II I I

"I 1"1

(/) I [x:,(,)r dT I I [X;;dT'lr dr,
.. ,I ... 11

"

tlc",U,,1T > r (rl I X,~,(Ti)dr I r:,(r:)d, .
• II ,"

"

+(11/(') IT I, (I -,)\;;,(,)\ (, ldr

(42)

:\ow. it can be ohsened tklt the e\ aluatinn nf .,econd order moments of eigenvalues can
he carried out in a more accurate manner in that each integration involves only one
particular type of function The numerical method that is hest suited for a particular
integrand can he employed In each case thus lcading to the overall accuracy, Further.
integrals that imol\e products of correlation functions and eigenfunctions are not present
in the covariance e\pression for eigenvalues deri\t:,d herein

\1'1'11(\ III l,S

(i l Fluid cO!1I'Crilll/ flipI'I

The hOll1ogeneOLh equ~11ll1n of motion 01' a cantIlc\ered tubular pipe of length L
conveying fluid with a deterministic \elocit~ [ and having a stochastic distrihution of
Young's modulus and mass densit~ is given as.

: t[1 - (/( 1)]111 '. Fil till[ It h(1 lilt t· 2,\H Ii -+- ,Hli' = 0

suhjecl to the houndar~ l'ondllll11ls,

11(0.r) =11 (0.1)= IIIL.!I= :£[I+(/(\)]/ll"; I. 1=0.

(43)

(44)

I n the a bme eq ua tiolls. F a Ild 111 denote respecti \ely the Young's modul us and mass
per unit length of the pipe material. Jl is the mass per unit length of the flowing fluid and
F is the centrifugal force, This equation descrihes the free. undamped oscillations of the
systcm neglecting the \.'trect of gravity forces, Thc centrifugal force is denoted by F and
further F = .H[', The corresponding adjoint system can be written by the equation.

:F[ I -o( 11]111" -t FII' t-illil + h( I lilt - 2\H\i' + Mli" = 0

subject to thc houlldan llllllJllions,

(45)



11(0.1)=0. rll~·1(11)1/11(1.I)+FlI(I.I)=O at.l=L;

:/[1-11(1)1/11(1.1);+1"11(1.1) =Oat.l= L. (46)

The second order momenls of elgl'n\ alues can he ohlained using the methods described in
the prelious sections. after some nwditicalions. From eqn (33). the following expression is
obtained

em (I' . /1) =

II + III ~ 1"\ ~,( ,) d~
I,,,

• [\ (T J] dT dT

where the dimensionless p,lraJ11l'ler /1 IS equal to the ratio Jf III. In terms of variance
functions. the l'l)\ariance het\\een thc' l'lgem alues is writtcn as

COl (/1./1.1

( I + III I 1\ ,(. I d·
1,:"

I, [ \ (48)

(ii) ViJII (iJIIW/'lllli/ell liJ1Idcd (,;(Ilillll'

First. a cantilevcr column lo,lded \1: .1 lip Illllo\lcr force at one end. which is known
as Beck's column. is considered. )uung's !l1odulus F. mass dcnsity III and follower load P
arc randl1m Thc undamped. frel' llsc'ilbti,ln, arc' given by the differential equation.

:F[1-'1I(I)j/,

subject t,l the houndan condition"

1'( I - ()II /n[1 + h(.\)]ii' = 0 (49)

I I (0. / ) 11(0.1) = I). "t!. II 0.: f/[ 1+11(.1)]1\":' = 0 atl = L. (50)

The adJOint system h gi\en h:.

:fll - 11(1)1/1,

subject to the houl1LLrn cllnditll)n\.

(51 )

II( O. /) 11(0.11=0. Fhl-tIl(I))lI"+P(I+c)lt=() at,I=L;

+-I'il+(Jtl=O at\'=L. (52)

Using these ditfcrential L'ljualll11h. 1111' 'L'cond 1111)Il1Cnts of vibration frequencies are given
a~
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I
Var (II,) = --1

{r X~)(1") dT
• II

x[X;;)(T2)rdT,dT:+I;)~,(Ji II I' PI,/,(T, ;:').~')~)(1"I)X~)(;:2)d1"ld1"2
." • Ii
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(53)

4. ""U'v1ERICAL EXA'v1PLE

(54)

First a Leipholz column of one metre length is considered, Introduced is the parameter
g* = g/E I. for generalization. Following five correlation models are considered to charac­
terize the second order statistical properties of the system,

I. The triangular correlation function given by

ITI -To!
1- -. ITI-Tol<ii

p( T 1 -- T.) = I a
l O. iTI-To ?/i

2. The first-order autoregressive random field correlation. (commonly known as AR (I) of
Box-Jenkins models) given by

/; = a constant = feE)

3. Second-order autoregressive correlation model gi\en as.

P( T I - T, ) = II +

4. Squared exponential correlation model commonly known as Gaussian correlation
model. given by

p( T I -- T2) = e 1-

5. Sine function correlation model that is given by
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where . .I" is the strength of white nOise and);, is the upper cut-off frequency of the power
spectral density given by

(r

S( j)= ,"I'" = 2/,,'
IfI <);,

o. IfI >f"

It may be noted that this correlation model pertains (Shinozuka. 1987) to a mean-zero
band-limiting white noise process in which the bandwidth increases without limit. This
correlation model has been shown to be highly useful in obtaining upper and lower bounds
for both parameter and response variability of stochastic structural systems.

In the above expressions. a. ii. (. and {! denote parameters of the correlation models.
The mass density and Young's modulus are considered to be the uncertain parameters. The
variances of fundamental free vibration frequency for different correlation structures of the
input fields and input variances are given in Table I. In all these cases. a= ii = t = a= 25
and So = 0.01. This study gives the effect of randomness in different system parameters on
the free vibration frequency statistics. To study the effect of the constants of the correlation
models. the results for different sets of val ues of (/ and h are given in Table 2. For a particular
set of constants of correlation models. the effect of type of correlation models on the

Tahle I Variances of I', for q* ~ .10 \\ 11CIl Ie' dnd III arc randoll1 fields 1'1 ~ 25. " = h = c = d = 25

Input
vanance

Tnangular

('orrelallon function
Firs[.(ln!e1 Second-oreler

\R \R Gaussian

Finite power
white noise!:, = 20

S" = 10-'

I ? 10
2)< 10
, x 10
4 x 10
5 )< 10
6 x 10
7 )< ]0
k x 10
lJ x 10

10 x 10

".SO()2
ISOPlJ
2~.5~OX

100.1'k
17.5447
4S.0S.17
)~.~62t1

6007 1 "

6-, SRO"
7S0RlJ4

7. S IOil

1"01%

.'11.0.191
_~ 'i. 54Xl)

4SII Ss ­
5~.5hK:'

(1)07K1
67.5X~()

75.0l)7k

6')N7

1.'.K7h'l
211.7847
2766S11
.14.SkI2
41.4lJ"'
4s.40,11
:'5.28,'\l)

62.2000
690514

7.5092
IS.0719
22.526k
'0.0.158
.175447
45.05.17
52.5626
600715
67 5805
75.0894

7.509
15.071
22.526
30035
37.544
45053
52.562
60.071
67.580
75.089

lahle 2 Effect of constant, pI c'(lrrelatlon nlllliels on var (Ii,) when r,' and 11/ are
rand(lll1 helds

Input
\-anance

fnan!,!ular e()J"I'elatlon
For For

(/ =- 15 (/ 25

Fi r51-order
AR

For For
h = 25 h ~ 15

I 10
2 • 10

'" 10
4 10

10
6 x II)
"., II)
S.> II)
'I x. 10

10 x 10

7.450s
14.9010
22,,515
2980211

44.70,,0
52.15.15
W6040
()71)54'
7450S0

'- 50\.)2
1,.1) 17'1
22.526X
,I)035S
37 "447
451) S37

::;2 ..~626
hO.1I7 IS
hl.sRI)'
-'.IIR94

7.5100
15.0196
22.529"
,,()0391
.17.5489
45.0587
52.5685
60.07k3
67.5880
75.0978

7.4531
14.9057
22.3585
29.8113
37.2541
44.7171)
52.1698
59.6226
670754
74.5283



685

variances of Il, is now sought. Two cases are considered: (1) when only E is random (case
B) and (ii) when both E and 111 are random (case A). The results are given in Table 3.

;\;ow. a cantilever pipc of I metre length which has a stochastically distributed E and
III is considered. Flow velocity of thc fluid that nows through the pipe is taken to be
deterministic. For the mean problem. the method suggested in Paidoussis (1970) is adopted.
First, E alone is treated to be random. The variances of )1,. for the five correlation models
given in the first example are given in Table 4. Now both E and 111 are treated to be random
and the results are given in Table 5. Symbols are used in accordance with Paidoussis (1970).
Further results are plotted in Figs I and 2.

These numerical results show the impact of randomness of each of the system par­
ameters on the responsc variabilit: and also the dependence of response moments on the
type of the correlation models being employed to account for the parameter variability.
Also. the dependence of response moments on the length of correlation of the random fields

Table i V'ar Iii, I 'nr dltlercnt inpul 'anance,,, = h = (' = 25

Input Flrst-ordel Second-order
variance for rnall~ular ·\R AR

randol11 helds C"e c\ Case H C"c A ('a,e H Case A Case B

010 7~_2739 I.UlJUIJ !)~i\2,~ I UlJUI 69.2235 1.0350
0.11 8281J 12 1.llJlJlJ 82 ..~ IIJ' I IlJ91 76.0992 1.1385
o 12 91J.2286 1.3U81J l.!O, J_,~"7 I .,081 830173 1.2420
o I.' 'F8560 1... 1"IJ ')78ll(,9 I .. 17l 89.9354 1.3485
UI .. In~,-,x3~ 1.2"lllJ 105.'lJ"2 1..'261 96.8535 1.4490

0.1 " 112.91 U8 I 6151J 112,92J-1- 16351 103.7716 1.5525
1J16 121J.4182 I 7·UIJ 120.4516 I 7..41 110.6897 1.6560
U 17 12' %56 18-;,1 I 127,979- I ,~5) I 117.6078 1.7595
U 18 Iy; .492'! 1.%2U I'" 'illS I I 9621 124.5259 1.8630
UIlJ 1"'i112Ir1 21PIU 1..31136 1 2 11712 131.4440 1.9665

'i.5 and Ii 112. \\hen I "" r"ndol11 field {/ = h = c = d= 15

Inpul ('orrL'latIOll Illodel Finite power white noise
vanance 11r't -order Seullld-ordel f.= 10
(j,~ = (T' rn"ngular \R ;\R Craussian So = 10 '

O.IU "1I12.112S ') ..012.6111, .'668.4..6U 4U 120289 4012.028
U.II ..41.'2318 4413.86211 4UH98:''' 441.'.2318 4413.231
U.12 ..814.434" 4~1~.1~2~ 4..UI 7LJNLJ 4814.4347 4814.434
(Ui 52\ ~.6_~ If) ~216.~;-';2J 4768 .. ':'8 "215.6376 5215.637
U.I" 5ll1ll8411.. 'i617.6"2' 'i 135.1812 5616.8404 5616.840
(J.l ' 61J I80.. 34 6018.'!1128 "5U I "".1U 61118.0434 6018.043
0.16 6.. 1'}2..62 6420.1629 "868.52'i8 6419.2462 6419.246
(U 7 6'211.4"lJ2 6821.42.' I 62'5.'1188 6820.4492 6820.449
(J.l 8 72.21.6:'20 72~2.()i\.'~ 66020lJ 16 7221.6520 7221.652
O.llJ 7622.71.1U "76~""X 1::; 69688'4.- 7622.7130 7622. 713

Table 5 Vanances ,)1' Ii, ror ( .'." alld II = 0.2. \I hell L dlld IJI are rand0111 fields. a = h = (' = d = 15

Inpul c.J1Telatioll 1110del Finite power white noise
variallLc Firsl-order SeCt)nd-l)rde) t:.= 10

(J ~ = (f': (T [riall~ulal \R \R GausSIan So = 10
)

(1I11 ..04-. "%1 ..0..4. PO() _~(lq""',q'hh ..04:1 7%1 40437961
Oil ..448. I"C ..448 8076 "11()74!l'l1 4448.1757 4448.1757
o 12 ..852.555.' ..85'.2..47 ...._".2.' 12 4852.5553 4852.5553
o I.' :'25h.LJJ4LJ 5~)7,()S 1 7 "8Il6.814() 5256.9349 52569349
0.1 .. "66 13 I.. 'i '61>2.1188 ) \""":6,:' I ~~ 56613 145 56613145
0.1 " 606".6lJ"2 6066' "5lJ '546.02" 6065.6942 60656942
o III 6470.1173- 64 70.9929 '91'.'60" 64700737 6470.0737
o 17 1>874..5"4 68''' ...300 «~X~Al).';;;h 6874.45:14 6874.4534
o 18 "'27".X~29 727lJ~6 70 665~,2_1()~ 7278.8:129 72788329
0.19 768'0689 76~". 1604 7024.%" 76S30689 7683.0689
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Fig . .2 Val' Iii ) of a Leipholz Wl1l1l1n for,!* = 30 and p, = 25 when E and III are random.

that model the uncertain fluctuations of material properties and loadings is brought out
through this numerical study. The order of response variability can be seen to be larger
when the mass distribution is random.

, CO,,"CLLSIOI\S

Eigensolution variability of one-dimensional non-self-adjoint structural systems that
have an uncertain distribution of material properties and loadings is evaluated based on a
stochastic modelling of uncertain parameters. An asymptotic solution to the individual
realizations of eigenvalues and eigenvectors of the non-self-adjoint differential equation
that describes the free-undamped oscillations of the structural system is obtained. Second
order moments of eigenvalues are calculated based on this asymptotic expansion and in
terms of the second order probabilistic characteristics of uncertain material properties and
loadings. Principles of local averaging are employed to evaluate the second order moments
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or eigenvalues Jl1 practlc~tI L'ircumst~lI1ces Ilherein full length correlation information about
the random fields that nwdel uncertain maten~i1 propertie, is not available, Sensitivity of
eigenvalues of the non-,ell'-adloll1t sy,tem to the lariations in material properties and
loadings is ,ystematically brought out by embedding their corresponding independent
perturba tion par,lllleter, in bot h the a,y 111 ptotic e\pansions for eigenvalues and eigenvectors
as well as the partial dIflerential L'quation, Thc numcric,tI study encompasses the most
commonly observcd corrclation mode!'> and brings out thc sensitivity of eigensolutions to
the randomness in each or the material propertie, or the structural system,

That (i) the response lariability of the non-sell'-adjoint structural system is quite
sensitive to the randomne,s In mass density than to thl' randomness in Young's modulus
and (ii) the ,olid-fluid ,y,tems such ,IS fluid-floll ing pipes are many a time more sensitive
to the uncertainty Jl1 respect of matenal properties and loadings when eompared to com­
pletely-,olid structural ,y,tem" can he ob,ened I'rom the covariance expressions of
eigenvalues, These faet'> can he dficjently used in contr"lling the parameter variability of a
mechanical component during the manufacturing stage itself. It is known that for a par­
tIcular manufacturing material and for a prescrihl'd lariability of its strength properties
such as Young:', modulus, the uncertainty associated II Ith parameters such as mass per unit
length can he controlled during the production stages or a structural component. When the
reliahility of the non-,elf-adioint ,tructural ,ystem is prescribed, the allowable level of
randomness in such parameters can be calculated from the expressions for the second order
moments of eigem ,tlues that are obtained in the present paper. Moreover, it is observed
here that uncertainty-sensitile structural systems, In the present case the fluid-flowing pipes,
can he IdentIfied bl el aluating second order moments of eigenvalues, That a probabilistic
analysis is essentIal I\hen SUdl uncertaintl-sen.,ilile 'Istems are deployed in important
,tructures such as nuclear structure" g~l' lines, Cl>IHlult'> in hydro-electric power plants etc"
is also ohserved from the present \Iori-. Further. 1'lllk,IIlI1g points are observed from the
numerical study am] thes,: are quite lIseful I'm designing reliable and safer mechanical
system,: (i) the triangular. !inite power white lWhe ,llJd Gaussian correlation models result
in almost same I~tlues 01' secllnd ()rder moments Ill' elgelll alues for certain values of the
length of correIa t ion, (I i) lirst-order A R eorrela tl, HI ,t ructure results in larger values of
eigenvalue moment'>, (Ilil Lll'ger I~tlues or const~lnt'> uf correlation lead to larger values of
eigenvalue lanability as I'ar as the triangular and lirst meier AR fields are concerned, (iv)
the randomness in mass density IS m.lnv a time 11I0re SCI ere than that in Young's modulus,
in amplifYll1g the response lariabilit\ and (I) the trIangular and first-order AR correlation
struclures lead to almo,t the same order of respun,e lariability amplification and further,
the second-order AR corrclatlon flll1cti,)nleads ttl comparatively smaller values of response
variabilityampliticdtiol1

The fl'regoing: i1111strall's an et1il'iL'nt methud "f ct1'cellleiy integrating the concepts of
prohability theory, stochastic fields dnd aSlmptolic analysis, to analyze and design real life
mechanical ,ystel11s. Thh method of an~dysis ledds tu the ,ystematic extraction of the
attributes of respunse lanability and their relatilL' selerity in amplifying response varia­
bility. It is well klhl\ln that the \ lbraton respol1,e ,11' Iwn-self-adjoint systems is highly
sensitile to internal dampIng or the structur,d I11d1l'naL Inclusion of damping in the pro­
babilistic ~ll1alysis ill' the present paper hmleler \Iuuld require a totally different set of
asymptotic expansions from tha t uf the presen t ,111;1 Iy ,i, ,i nce the \eloeity term should also
be expanded into an asymptotic ,enes and henL'c Ilarrdnls a nel\ analysis,
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