ire 2 Sodds Strwctires Yol 33 Noo S, pp. 675 688, 1996
Pero: Copyright ¢ 1995 Elsevier Science Lid
7/ €rgamon Printed in Great Britain. All nghts reserved

0020 7683:96 $9.50 + .00
0020-7683(95)00055-0

PROBABILISTIC ANALYSIS OF NON-SELF-
ADJOINT MECHANICAL SYSTEMS WITH
UNCERTAIN PARAMETERS

R. GANESAN
Department of Mechamcul Engineering. Concordia University. Montreal. Quebec.
Canada. H3G IM&

{ Received D May 1994 2 in revised torm 21 February 1995)

Abstract -- A new approach to analyze mechamical svstems that have an uncertain distribution of
material properties and loadings. tor the variability ot their dynamic response parameters is
developed. The methodology 1s demonstrated through solving for the probabilistic moments of
eigenvalues of' 4 non-self-adjoint structural system. Material properties are modelled using random
fields and uncertain loadings are modelled using random variables. By treating the random fluc-
tuations of vibratory response to be the stochastic perturbations to mean response, second order
moments of eigenvalues are obtained. To circumvent the practical difficulty of obtaining the exact
correlation models tor parameter variability. second order moments of eigenvalues are evaluated in
terms of variance functions. Both the sensitivity of cigenvalues to the variability in system
parameters. and the effects on the eigenvalue varability of correlation properties of uncertain
parameters are demonstrated

1. INTRODUCTION

The vibratory response of mechanical and structural systems is highly sensitive to parameter
fluctuations. The dynamic response becomes a stochastic function when systems have an
uncertain distribution of material properties and loadings. Most real-life loadings are
random. The strength and deterioration characteristics of cost-effective materials such as
composites, microgeometric topography of mechanical components etc., have an uncertain
distribution due to manutacturing or measuring errors. variations in the sizes of fasteners
and operating environment. In these circumstances. safer and reliable designs can be
achieved only by probabilistic modelling and analysis (Hori. 1973 ; Ibrahim, 1987 ; Schueller
and Shinozuka. 1987). Further. a probabilistic analysis is essential for the evaluation of
reliability and service life of. and accumulated damage in a structure (Bogdanoff and Kozin,
1985 ; Bolotin, 1989).

Stochastic models for material properties. microgeometric topography of machined
surfaces and environmental loadings have recently been developed (Shinozuka and Lenoe,
1976 Vanmarcke, 1983 Zhang and Kapoor. 1991). Vibration analysis of mechanical
systems has been performed based on a probabilistic approach (Herrmann, 1971 ; Soong
and Cozzarelli, 1976 : Schueller and Shinozuka. 1987 ; Bucher and Brenner, 1992 ; Elishakoff
and Colombi. 1993 : Ramu and Ganesan, 1993). Eigenvalue problems of structural systems
have been analyzed in the works of Bovee (1968). Shinozuka and Astill (1972), Soong and
Cozzarelli (1976). Vom Scheidt and Purkert (1983). Ibrahim (1987). Benaroya (1991), and
Ramu and Ganesan (1993). However. all these works deal only with self-adjoint systems
l.e. structures subjected to conservative loadings.

Many important mechanical systems such as actively-controlled systems, rotor systems,
aeroelastic structures and pipes conveying high velocity fluid flow, are described by non-
self-adjoint differential equations. Rotor systems and non-conservatively loaded columns
have been analyzed in the works of Ganesan ¢/ «f. (1993) and Sankar er al. (1993). The
uncertain axial loadings have not been considered in these works. Both the uncertain
loadings as well as material properties have been considered in the work of Ramu and
Ganesan (1992). However. (1) lull covariance structure of the eigensolutions has not been
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676 R. Ganesan

obtained. (i) only distributed axial loadings have been considered, (iii) only one boundary-
condition has been considered. (iv) the expressions derived pose computational difficulties
for certain types of correlation relationships and (v) the closed-form solutions developed
are based on perturbation expansions that lead to less accurate results.

Further. in the above work. the stochastic fields have been characterized through their
full-length correlation functions, which are seldom available in industrial practice. Newer
measures of uncertainty such as scale of fluctuations (Vanmarcke, 1983) can be used to
account for this practical difficulty. The expressions derived in the previous work (Ramu
and Ganesan, 1992) have to be numerically integrated and they involve mixed functions of
correlation functions and higher order derivatives of base solutions. Since the numerical
method that is best suited for a particular correlation function need not be the best-suited
one for the higher order derivatives of the base solutions, the computational accuracy is
largely affected. Also, for certain correlation functions such as the singular functions of
white noise field and the exponential functions of Markov processes and autoregressive
correlation models. the numerical evaluation becomes highly inaccurate. All the above
issues are considered in the present paper and a new approach that employs asymptotic
expansions that are completely different from those employed in the previous works is
developed. More general solutions that yield the complete covariance structure of eigen-
solutions are developed in such a way that they can readily be employed in practical
design and diagnostics problems. Both distributed and end axial loadings as well as different
types of boundary conditions are considered in the present paper.

2. MATHEMATICAL FORMULATION

The non-self-adjoint structural svstem considered here is described by the following
partial differential equation :

VE[D a0V = PO+ oOw” + g[1 +d)(L—x)w" +m[1 +b(x)]i = 0. (N

Here w 1s the characteristic state variable of the elastic system, primes denote partial
differentiation with respect to x und overdots denote partial differentiation with respect
to 1.

In the above equation. the second and third terms involving the second derivative of
the state variable make the partial differential equation non-self-adjoint. Many important
structural systems can be represented by this partial differential equation. The undamped-
free motions of beam-columns subjected to axially-distributed as well as end follower forces
and that of cylindrical pipes conveying fluids (the effect of coriolis accelerations is included
separately) are described by the above equation. Further, the undamped-free motions of
actively-controlled structures such as the antenna arm of a satellite, are described through
the above equation. The first term in egn (1) represents the effects of flexural rigidity of the
structural system. The second and third terms represent, respectively, the effects of end
thrust (or centrifugal forces in fluid-flowing pipes or control parameter in actively-controlled
structures) and distributed axial loadings (or friction forces). The last term stands for the
effects of inerval forces (structural. fluidic or coupled structure-fluid forces).

The boundary conditions are provided depending upon the type of the structural
svstem being considered and further initial conditions about w and dw/dz at the time origin
are also provided. Even though any set of boundary conditions can be taken into account
by the present method of analysis. following two cases are considered in detail for the
purposes of brevity and clarity :

Cuase l:
wio.7) = w'(o, 1) =0 (2)

WLty = E[1 +a(x)] x W laen =0 (3)
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Case 11:
w(o, 1) = w'(o.r) =0 4)
wil.r)y = w'(L.0n)y = 0. (5)

It may be noted here that when P = 0. eqns (1 3) describe the undamped-free motions
of a rod subjected to distributed non conservative axial loadings, which is known as
“Leipholz column™. Similarly. when g = 0. eqns (1-3) model the undamped-free motions
of (i) a rod subjected to follower force P at the end. which is known as “Beck’s column™
and (i1) an antenna arm of a satellite that is actively controlled using a constant-feedback
control factor P. In the above five equations, functions a(x) and h(x) are independent one-
dimensional univariate homogeneous stochastic fields and further ¢ and d are independent
random variables. These stochastic coefficients are characterized as follows :

a(x): Zero mean: variance o, ; autocorrelation R, (t): PSD function S,, (f): correlation
function P,, (t): normalized PSD function s,.( /). scale of fluctuation ®,,.

h (x): Zero mean ; variance ;. autocorrelation R, (t): PSD function S,,(f): correlation
function P,, (1) ; normalized PSD function s,,( /) : scale of fluctuation @,.

¢.d: Zero means: respective variances o- and ;.

7. {7 The lag vector and the wave frequency.

The solution to eqn (1) is sought in the form
win ) = X, () x 1 (6)

where 7,(7) is a time function such that 0°T,(1) 61" = —Q, T,(1) and it is implicit that the
solution has a discrete spectrum. After substituting egn (6) into egn (1), one gets

DLYE + a(rIIX ()] + 1 LA (0g( + d)L L))
+LLPPA+ OX () —ml + AL X, () =0 (7)

where the dimensionless parameter © = x [ 1s introduced so that primes now denote differ-
entiation with respect to 7. The boundary conditions correspondingly turn into

Cuase 1
X, (0) =X (0)=0 (8)
Xy = [E[l+a(D))Ix Xy ], ., =0 (9)

Case 11
X, (0)=X(0)=0 (10)
Xty =X, =0. (1D

After mklltiplying eqn (7) by L°. dividing by E/ and making the substitutions
G=L" ElLu, =Q xmL* Eland g, = gL.eqn (7) can be written as

U+ 20X (D)) +g, G =)y +dYX (0 + PG+ )X () = i, [T+ Bb(D] X, (1), (12)
In order to characterize the stochastic fields in the asymptotic analysis that follows, two

perturbation parameters z and S have been introduced into eqn (12) to be associated with
a(x) and h(x) respectively. The following asymptotic expansions are now employed so as
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lead to the determination of full covariance structure of the response variables in an easier
and more straightforward manner.

M = foo = 2+ Pt i oy £ (13)

XA = X, () +a2X, 0+ X (D) +dX (D) + X, (D +. ... (14)

It may be noted that the above asymptotic series expansions are different from that of the
previous work by the present author (Ramu and Ganesan. 1992) in that the stochastic
coeflicients of the partial differential equation. ¢ and d (which are the random variables
that correspond to constant end thrust and distributed axial loading respectively) are being
used as the perturbation parameters of the asymptotic series expansions that correspond
to eigensolutions. It is this form of asymptotic expansions that actually leads to the
calculation of the covariance structure of eigenvalues in an easier and more accurate manner
than that of the work by Ramu and Ganesan (1992).
After substituting the above two asymptotic expansions in eqn (12). one gets

4 2O [ X0 (D) + 2 X (O + X () = dX (D) X () +. L]
+ o, GO =+ X () + 2 X (D) 4+ BX (D) +dX (D) + e X () +. ..
+ PG+ )X (D +2X (D)~ XA +dX () FeX (D +. .
= o+ 2, P di, g e

VD) X B (DAY )+ XL () L T BB (15)

On expanding ¢qn (15). collecting terms of like power in «. i, d and ¢ and then settmg
x=f=1 asctof mdmar) differentuial equations are obtained for X, (1).i=0,1,2,...:

XD + g, GX (1) = g, GTA L (1) + PGX 0 (0) = p,0X,0(1) (16)

X))+ g, G—g, GOX (D) +aD Y0+ PGX ()4 2a ()X (1) +d" (1) X o (T)
= Juul)/\/nl(T)+;Ll»1IX1'ID(I) (17)

X+ (g, G =g, GO A0+ POX A1) = 16,0 X,0 (1) + 16,2 X oo (T) + 1,0 T X 0 (T) (18)
X0+ (g, G—g, GO (D + X0 + PGX T = 1,0 X5 (D) 4 1 X (T) (19)
X700+ g, G=g, GOX () + PG 0+ X 0(0) = g X () F 6,0 X a(t) .o (20)
In the above equations. overbars associated with P have been dropped for convenience.

Corresponding to the above set of differential equations and asymptotic expansions given
by eqns (13) and (14). the boundary conditions are rewritten as follows :

Casel Casell

X.(0) =0 X,0(0) =0 @1
Yo =0 N2(0) =0 (22)
X =0 X,(1) =0 (23)

Ath =0 XNy =0 (24)



Non-self-adjoint svstems 679
Casel:Xn] (O) = XHZ(O) = X,,}(O) = er4(0) = X;I] (O) = X’,’,:(O) = X"13(0) = X:,4(0) = 03
(25)

Casell: X,,(0) = X,-(0) = X,;(0) = X,,(0) = X,

nl

(0)
= X5(0) = X5(0) = X74(0) =0 (26)

Case l: X7, (1) = X72(1) = X7:(1) = Xu(1) = X7 (D) = X75(1) = X5(1) = X7(1) =0

Casell: X, (1) = X,-(1) = X. () = X.() =X,/ (1) = X.(1) = X5(1) = X, (1) =0
(27)

The generating solution p,, and X, (r) are obtained from eqn (16) corresponding to
boundary conditions given by eqns (21)-(24). Using these, other components of the asymp-
totic series are obtained as follows. Considering eqn (18). after multiplying by X, () and
then integrating between 0 and 1. u,, can be obtained corresponding to any set of sample
realizations of stochastic parameters a (), # (1). ¢ and d. according to:

~ ~l I

A (DX (DX, (1) dr+2 a’(r)Xiii.(r)X,,n(r)dr+J‘ a(1) X5 (1) X0 () dt
Jo Jo 0

1
‘ Xi(n)dr

v

(28)

It may be noted that point fluctuations of the coefficients of the non-self-adjoint system are
considered to constitute the stochastic perturbations in the asymptotic series expansions
for eigensolutions. After integrating by parts and using the boundary conditions for X,
(1), i, 1s approximated as,

~l

Hat =J (I(T)[Xn[)(r ‘ X/H)(T dT (29)

S

In a similar manner other components of the asymptotic expansion for eigenvalues are
obtained and they are given by

~ ol
oy = — [y ' /’(T)X«_:U(T)df U X,:;(](T) df} (30)
JO Lo
N ~l
iy =9,.G ' (I =D X (D)X, (1) d1 “ Xio(1) dr} (31)
Jo JO
| ~l
My = PG [ Xoo(DX,0()dr {J Xoo(1) df}- (32)
vl LJ0

From eqns (13) and (28) (32) it can be shown that the mean value of g, is equal to g,
since the stochastic fields a(x) and b(x) are zero-mean fields and further ¢ and d are zero-
mean random variables. The expressions for covariance between any two eigenvalues g,
and y,. and variance of any eigenvalue g, are now evaluated.
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l

)
Cov(p.pt) =, — 1) (—p)> = { ‘ Xi(r)dr Xfo(r)dr}

Jo

Mo
x { J R (1t — )X (T, )]Z[X;;)(T:)]: dr, dr,
(

JO JO

~l I
+ Lo fo ‘[ Ryt — 1) X (1)) X (1) dr, dr,
{

JO )

Il

+1(9,G) 03J

|
(1 —t) X (t)X,e(1))dr, J (1 —T:)X;E:(Tz)x,’u("f:) dz,

Q 0

. ~
‘?'(PG):O'(: Xolt )X () dry X;I)(TD)X;I)(f:)dT2+----} (33)

AL JO

™ 2 [
Var(y,) = ‘{l [ Xﬁnﬁ) d‘f} }{[ . R,.(T ‘T:)[X;:)(Tl)]:[/\/;él(fz)]: dr, dr,
JO Ji

oM 1 2
T,“,:u . ’ Riu(T) _TI)XIII)(T])-X’.i)(TZ)dII dT:+(.6/LG)263[J (I=1) X5 (1) X, (1) dT:|
Jo Jo

0

] 2
+(PG)305|:[ X;;)(I)X,(,(r)dr] +} (34)
J0

It can be seen from the above two equations that the eigenvalue variability due to the
mass density is often more than that due to the Young’s modulus, i.e. the eigenvalues are
more sensitive to variations in mass density than that in Young’s modulus. It can also be
observed that for particular values of covariances of random fields «(x) and b(x) and
random variables ¢ and d, it is the shape of the correlation functions or corresponding
power spectral density functions that determines the values of covariances of eigenvalues.
The correlation function could be an exponential decay function which corresponds to first
order autoregressive model or any other linear. quadratic or sine functions. The evaluation
of a suitable correlation model from among various competing models using the exper-
imental data is a tedious job and in most cases. a satisfactory model would not have been
evaluated at all. An alternative is given here for use in this circumstance that makes use of
the theory of spatial averages. The stochastic coefficients of the differential system are now
characterized through the scale of fluctuations or variance functions which are the more-
recently-developed measures of stochasticity. A detailed theory about the theory of spatial
averages can be seen in Vanmarcke (1983). The spatial averages of stochastic coeflicients
are formed over the domain of the differential equation and are obtained as

~

a, = (1LY | a(tyde: b, = (/L) [ b(t)dr. (35,36)

it v

Probabilistic moments of these spatial averages are given below :

[
[l
P“I
If
o

(37)

rl L
Var(a;) = o> L* [ P, (t,—15)dt, d7, (38)

0 g0

v
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ooy

Varih,)y=a, L° ' ' Pt —1aydr, des (39)

Gl
If T, (L) and ', (L) denote respectively the variance functions determined from the
respective scales of fluctuations of the random fields «(v) and A(.v). the above two equations
can be rewritten as.

Var(u, ) =620 (Ly: Var(h,) = ail (L), (40.41)

Now. based on local averages of stochastic cocetlicients. second order moments of
eigenvalues are given below:

ooy . | N ~

Cov (. j1,) = :’ Yo (o)de . X’Z,(r)df% :!Tl (1) ' [Nt dry | [X(rs)]) des

o .

n

" .
F gttt < Tl ' Yot dr ' Xa)drs
U Jo

N M|

+(_¢/,(i)'r7“;' (- X)X (m ) de . (- X () X () drs
(PG 7 I X (rdr ' YoV raodro+. 5 (42)

Now. it can be observed that the evaluation of second order moments of eigenvalues can
be carried out in a4 more accurate manner in that cach integration involves only one
particular type of function. The numerical method that is best suited for a particular
integrand can be emploved in cach case thus leading to the overall accuracy. Further.
integrals that involve products of correlation functions and cigenfunctions are not present
in the covariance expression tor eigenvalues derived herein.

APPLICATIONS

(1) Fluid conveving pipes

The homogeneous equation of motion of a cantilevered tubular pipe of length L
conveying fluid with a deterministic velocity ¢ and having a stochastic distribution of
Young's modulus and mass density is given as.

CELL a1 e s B m] s Ao - 20 = M =10 (43)
subject to the boundary conditions.

Wi = w0y = wlon = VE[ +at)) ), =0, (44)

In the above equations. £ and m denate respectively the Young's modulus and mass
per unit length of the pipe material. M is the mass per unit length of the flowing fluid and
Fis the centritugal force. This cquation describes the free. undamped oscillations of the
system neglecting the effect of gravity forces. The centrifugal force 1s denoted by F and
further £ = MU". The corresponding adjoint system can be written by the equation.

VEIT —ata e B em| 1 S b0 = 23U+ M =0 (45)

subject to the boundury conditions.
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WO = w0 =00 Ll =) v (v + (v =00 aty = L;

CEIL =g e o ) = Faiv ) = 0aty = L. (46)

The second order moments of ¢rgenvalues can be obtained using the methods described in
the previous sections. after some modilications. From egn (33). the following expression is
obtained :

P(m(r\ - Tj)[x\';;,(f|)]:

I [ .
Covip. ) = . . ~:a; ’
! Natnd- ‘ \'i,(r)dz:> :

v .

BESTIEE

|

AN e dr o de s G | ' /’v,,,('mr\),\"j,(r).Yﬁ(rw)dr,drw} 47)

where the dimensionless parameter i 1> equal to the ratio M. In terms of variance
functions. the covariance between the cigenvalues is written as

. ~
i . .
Covip . = . :17 <[ (L) . (X (1)) dr

{1+ .\@lfldf’ A\ ;.(.")dTi"

o

N

: ' [\ i) ds -u‘/lmf,[‘,,(L)' X dr

0
.

t

.Yﬁdr)dr}. (48)

v J

(1) Non ('UI)WI'Z'(III'I'(’/} {oaded columi

First. a cantilever column loaded by a tip follower force at one end. which is known
as Beck's column. is considered. Young's modulus £, mass density 7 and follower load P
arc random. The undamped. free oscillations are given by the differential equation.

CEfV s atay) o =P - wt - ml At =0 (49)

subject to the boundary conditions,

Wy =ty =00 v o =0 B a0 =0 atx = L. (50)
The adjomnt systenvis given by.
CE[T = gty Pl o =m[l b =0 (31
subject to the boundary conditions,
Wi = w0y =00 Fli+aom” +P(l+cpv =0 atnv=1L:
CENT—atafn 0 + PO +om =0 atv=L. (32)

Using these ditterential equations. the second moments of vibration frequencies are given

asS
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Pt —t)[ X))

PRI
x [/Y.:;>(T:)]: drdr, */4[\\10'{w I Pt -1, )X;:n(fl )X/Zn(fz) dr, de

v

Al
+lp(f):(7‘j[ Xoolt, )Xm(ﬁ)dfl]z} (53)

Jo

1
Cov (u; 1) = T T AT T

o o 1
. X(tyde ’ Xu(r)dr
)\.U JU J

rl 1l
(X,:;»(T: )): df: + ,“,rl)(r/':v (L)

v v

P
x {Uiru(L)J (X7t dr,

I
Xyzo(fl)dfl J X/'Z(J(Tz)dfz

0

0

o ~l

H(PGY 5 X;;.(r,),x;(.m»df,-J

v

‘X';;I(TI)X/'O(TZ)dTZ.}' (54)

1 4

4 NUMERICAL EXAMPLE

First a Leipholz column of one metre length is considered. Introduced is the parameter
g* = g/E I for generalization. Following five correlation models are considered to charac-
terize the second order statistical properties of the system.

1. The triangular correlation function given by

2. The first-order autoregressive random field correlation, (commonly known as AR (1) of
Box-Jenkins models) given by

Pity,—t.)=¢ =~ © * b = aconstant = f(&)

3. Second-order autoregressive correlation model given as.

4. Squared exponential correlation model commonly known as Gaussian correlation
model. given by

Pty ~t)=e " 7

5. Sine function correlation model that is given by
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sinfi(t; =)

1a) = 25,
P(t, —~1,) $ (t.—13)

where. s, 1s the strength of white noise and /, is the upper cut-off frequency of the power
spectral density given by

-

G
S(f) =8, =21
0. (>

L <,

It may be noted that this correlation model pertains (Shinozuka, 1987) to a mean-zero
band-limiting white noise process in which the bandwidth increases without limit. This
correlation model has been shown to be highly useful in obtaining upper and lower bounds
for both parameter and response variability of stochastic structural systems.

In the above expressions. 4. h. ¢. and d denote parameters of the correlation models.
The mass density and Young's modulus are considered to be the uncertain parameters. The
variances of fundamental free vibration frequency for different correlation structures of the
input fields and input variances are given in Table 1. In all these cases. d = b = ¢ = d = 25
and S, = 0.01. This study gives the cffect of randomness in different system parameters on
the free vibration frequency statistics. To study the effect of the constants of the correlation
models. the results for different sets of values of « and b are given in Table 2. For a particular
set of constants of correlation models. the effect of type of correlation models on the

Table |. Variances of g, for g* = 30 when 72 and mi are random fields j, =25 u=b=c=d =125

Input Correlation tunction Finite power
variance First-order Second-order white noise f, = 20
a7l =i Triangular AR AR Gaussian Se=10""
[ 10 - 7.5092 75100 6.9397 7.5092 7.509
2% 10 - 150179 13.0196 13,8769 15.0719 15.071
Ix 10 - 225268 2252002 20.7847 22.5268 22.526
410 - 2().0358 30,0391 27,6630 20.0358 30.035
Sx 10 - 27,3447 37,5489 345812 37.5447 37.544
6x10 7 43,0537 43.0587 41,4975 45.0537 45.053
7210 7 32,5626 325683 48,4030 52.5626 52.562
8w 10 - 60.0715 600783 332889 60.0715 60.071
Ux 10 - 67,5803 67.3880 62.2000 67.5805 67.580

0% 10 ° 75.0894 73,0978 69.0514 75.0894 75.089

Table 2 Effect of constants ot correlation models on var () when £ and m are
random ficlds

First-order

Input [mangular correlation AR
variance Faor For For For
=G =g =15 a - 23 b =25 h=15
I~ 10 7.450% 75092 7.5100 7.4531
2410 7 14.9010 13.0179 15.0196 14.9057
IN10 223518 225268 22,5293 22.3585
310 7 29.8020 30.0358 30.0391 29.8113
S 10 - 37.2525 37.5447 37.5489 37.2541
6= 10 44.7030 45,0537 45.0587 44.7170
T 10 52,1533 525626 52.5685 52,1698
810 59.6040 60.0713 60.0783 59.6226
Y 0 67.0545 67.5805 67.5880 67.0754

10 = 10 74.5050 750894 75.0978 74.5283
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variances of g 1s now sought. Two cases are considered : (1) when only £ is random (case
B) and (ii) when both £ and »1 are random (case A). The results are given in Table 3.

Now. a cantilever pipe of | metre length which has a stochastically distributed £ and
m is considered. Flow velocity of the fluid that flows through the pipe is taken to be
deterministic. For the mean problem. the method suggested in Paidoussis (1970) is adopted.
First. E alone is treated to be random. The variances of y,. for the five correlation models
given in the first example are given in Table 4. Now both £ and m are treated to be random
and the results are given in Table 5. Symbols are used in accordance with Paidoussis (1970).
Further results are plotted in Figs | and 2.

These numerical results show the impact of randomness of each of the system par-
ameters on the response variability and also the dependence of response moments on the
type of the correlation models being emploved to account for the parameter variability.
Also. the dependence of response moments on the length of correlation of the random fields

Table 3. Var () tor different input vanances v = h = ¢ = 28

Input First-order Second-order
variance for I'mangular AR AR
random fields Cise A Case B Case A Case B Case A Case B
0.10 732739 [.0900 732823 1 090 69.2235 1.0350
0.11 82.8012 [.1990 82.X103 1.1991 76.0992 1.1385
0.12 90.2286 [.3080 90 33%7 1 3081 83.0173 1.2420
0.13 97 8360 14170 97 R66Y 14171 89.9354 1.3485
0.14 105 3834 [.2560) 1033952 1.5261 96.8535 1.4490
0.15 FI2.910K 16330 1129231 1.6351 103.7716 1.5525
.16 1204382 17440 1204516 I 7441 110.6897 1.6560
0.17 127 9636 1.8330 127.9797 1 8531 117.6078 1.7593
018 1354929 1.9620 F33.50X] | 9621 124.5259 1.8630
0.19 1450203 2.0710 1430363 20712 131.4440 1.9665
Table 4. Variances of g for L= S3and ff = 02 when Fsarandomfielda =b=c=d=15
Input Correlation model Finite power white noise
variance First-order Second-order f.=10
g =a’ Triangular AR AR Craussian s = 1077
0.10 40120289 H012.601X 26068 4460 4012.0289 4012.028
0.11 4413.2318 4413.8620 40349824 44132318 4413.231
0.12 4814.4347 48151222 4401.7989 4814.4347 4814.434
0.13 S213.6376 3216.3823 4768 4328 5215.6376 5215.637
0.14 Sol6.8404 S617.6423 S1350812 5616.8404 5616.840
0.15 6018.0434 60189028 S301.7430 6018.0434 6018.043
0.16 - 6419 2462 6420.1629 SR68.525K 6419.2462 6419.246
0.17 6%200.4492 OX21.4231 6233 308K 6820).4492 6820.449
0.8 72216320 72226832 6602.0916 7221.6520 7221.652
0.19 76227130 EGRER I 0968 8743 7622.7130 7622.713

Table 5. Vartances of g, for = S5and ff = 0.2, when £ and m are random fields.a =b=c=d =15

Input Correlation model Finite power white noise
variance First-order Second-order 1., =10
6l =0, =0 Iriangular AR AR Gaussian Sy=10"
0.10 404327961 4044 3706 3007 9706 4043.7961 4043.7961
0.11 44N 1 TST 4448 8070 2067 4691 3448.1757 4448.1757
0.12 4852.5553 4853.2447 44372312 4852.5553 4852.5553
0.13 32569349 S257.6817 3806 8146 5256.9349 5256.9349
0.14 S661.3143 S662. 1188 S176.31K83 5661.2145 5661.3145
0.13 60636942 60663559 33460255 6065.6942 6065.6942
0.16 6470.0737 64709929 39157603 6470.0737 6470.0737
0.17 08744354 68754300 02854956 6874.4534 6874.4534
0.18 72788329 7279 %670 66552303 7278.8329 7278.8329

0.19 7682.0689 7684 1604 7024 9655 7683.0689 7683.0689
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Fig. 2. Var (2 ) of a Leipholz column tor ¢* = 30 and @, = 25 when £ and » are random.

that model the uncertain fluctuations of material properties and loadings is brought out

through this numerical study. The order of response variability can be seen to be larger
when the mass distribution is random.

5. CONCLUSIONS

Eigensolution variability of one-dimensional non-self-adjoint structural systems that
have an uncertain distribution of material properties and loadings is evaluated based on a
stochastic modelling of uncertain parameters. An asymptotic solution to the individual
realizations of eigenvalues and eigenvectors of the non-self-adjoint differential equation
that describes the free-undamped oscillations of the structural system is obtained. Second
order moments of eigenvalues are calculated based on this asymptotic expansion and in
terms of the second order probabilistic characteristics of uncertain material properties and
loadings. Principles of local averaging are employed to evaluate the second order moments



Nonssalt-adiom s s 687

ol eigenvalues in practuical circumstances wherein tull length correlation information about
the random fields that model uncertain material properties is not available. Sensitivity of
eigenvalues of the non-selt-adjoint system 1o the variations in material properties and
loadings is svstematically brought out by embedding their corresponding independent
perturbation parameters in both the asymptotic expansions for eigenvalues and eigenvectors
as well as the partial differential equation. The numerical study encompasses the most
commonly observed correlation models and brings out the sensitivity of eigensolutions to
the randomness in cach of the material properties of the structural system.

That (i) the response variability of the non-self-adjoint structural system is quite
sensitive to the randomness in mass density than to the randomness in Young's modulus
and (1) the solid-Auid systems such as fluid-flowing pipes are many a time more sensitive
to the uncertainty in respect of material properties and loadings when compared to com-
pletely-solid structural svstems. can be observed from the covariance expressions of
cigenvalues. These facts can be etficjently used in controlling the parameter variability of a
mechanical component during the manufacturing stage itself. 1t is known that for a par-
ucular manutacturing material and tfor a presenbed variability of its strength properties
such as Young's modulus, the uncertainty associated with parameters such as mass per unit
length can be controlled during the production stages ol a structural component. When the
reliability of the non-self-adjoint structural svstem is prescribed. the allowable level of
randomness in such parameters can be calculated from the expressions for the second order
moments of eigenvalues that are obtained in the present paper. Moreover, it is observed
here that uncertainty-sensitive structural systems. in the present case the fluid-flowing pipes,
can be identified by evaluating second order moments of eigenvalues. That a probabilistic
analysis s essential when such uncertainty-sensitive systems are deployed in important
structures such as nuclear structures. gas lines. conduits in hvdro-clectric power plants etc.,
is also observed from the present work, Further. tollowing points are observed from the
numerical study and these are quite useful for designing reliable and safer mechanical
systems : (1} the triangular. finite power white noise and Gaussian correlation models result
in almost same values ol second order moments of cigenvalues for certain values of the
length of correlation. (1) first-order AR correlation structure results n larger values of
cigenvalue moments. (i) larger values of constants of correlation lead to larger values of
cigenvalue variability as far as the triangular and frst order AR fields are concerned. (iv)
the randomness in mass density 1s many a ume more severe than that in Young's modulus,
i amphtving the responsc variability and (v the trangular and first-order AR correlation
structures lead to almost the same order of response variability amplification and further,
the second-order AR correlauion function leads to comparatively smaller values of response
variability amplification

The foregoing illustrates an efficicnt method of etfectively integrating the concepts of
probability theory. stochastic fields and asvmptoue analysis. to analyze and design real life
mechanical systems. This method of analvsis Teads 1o the systematic extraction of the
attributes of response vanability and their relative severity in amplifying response varia-
bilitv. Tt 15 well known that the vibratory response of non-self-adjoint systems is highly
sensitive Lo internal damping of the structural material. Inclusion of damping in the pro-
babilistic analysis of the present paper however would require a totally different set of
asymptotic expansions from that of the present analysis since the velocity term should also
be expunded into an asvmptotic serics and hence warrants o new analysis.
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